\qquad

1. (8 pts.) Draw Lewis structures for the following elements and ions.
a. $\quad 0 \quad \ddot{o}$.
b. $\quad \begin{array}{ll}\mathrm{Cl}^{-} & \ddot{\mathrm{Cl}}:- \\ \end{array}$
c. $P \quad . \ddot{P}$.
d. $\quad{ }_{\mathrm{Si}} \quad . \dot{\mathrm{S}}_{\mathrm{i}}$.
2. (16 pts.) Draw Lewis structures for the following molecules and ions (it is not necessary to calculate formal charges).
a. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

b. $\mathrm{NH}_{4}{ }^{+}$

c. CO
: $\mathrm{C} \equiv \mathrm{O}$:
c. $\mathrm{CH}_{3} \mathrm{SH}$

3. A Lewis structure for SO_{2} is drawn below.
a. (4 pts.) Determine the formal charges for all of the elements. Label the neutral elements with a 0 .
b. (4 pts.) Draw the two other resonance forms for SO_{2}.

4. (9 pts.) Determine which of the following molecules is(are) polar. Kekulé structures (Lewis structures missing the lone pairs) are provided.
a.

d.

g.

b.

e.

h.
$\mathrm{O}=\mathrm{C}=\mathrm{O}$ non-polar
f.
i.
$\mathrm{O}-\mathrm{S}=\mathrm{O}$

c.

5. (9 pts.$)$ Draw wedge and dashed bond shapes for the following molecules. Alternatively, you may name the shape and provide approximate bond angles.
a.

tetrahedral geometry ideal bond angles 109.5°

c.

trigonal planar geometry ideal bond angles 120°
b.

based on tetrahedral geometry ideal bond angle 109.5°
6. (10 pts.) A $35.0-\mathrm{g}$ sample of water that was initially at $95.0^{\circ} \mathrm{C}$ released $1,334 \mathrm{~J}$ of energy. Considering that the heat capacity of water is $4.184 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~K}^{-1}$, determine the final temperature of the water.

$$
\begin{gathered}
-1334 \mathrm{~J}=(35.0 \mathrm{~g})\left(4.184{\left.\mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~K}^{-1}\right)\left(\mathrm{T}_{\mathrm{f}}-95.0^{\circ} \mathrm{C}\right)}_{-1334 /(35.0 \times 4.184)=\mathrm{T}_{\mathrm{f}}-95.0}^{-9.1095=\mathrm{T}_{\mathrm{f}}-95.0}\right. \\
\mathrm{T}_{\mathrm{f}}=85.89084 .9^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{f}}=85.9^{\circ} \mathrm{C}
\end{gathered}
$$

7. (10 pts.) If $\square \mathrm{H}_{\text {combustion }}=-2598.8 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ for $\mathrm{C}_{2} \mathrm{H}_{2}$. Determine the mass, in grams, of $\mathrm{C}_{2} \mathrm{H}_{2}$ required to produce $1,755 \mathrm{~kJ}$ of heat.

$$
-1755 \mathrm{~kJ} \times \underset{-2598.8 \mathrm{kJJ}}{-1 \mathrm{~mol}_{2} \mathrm{H}_{2}} \times \frac{26.038 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{2}}=17.5838 \quad 17.58 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{2}
$$

8. (10 pts.) Considering that $\square \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ for $\mathrm{AlCl}_{3}(\mathrm{~s})$ is $-704 \mathrm{~kJ}, \square \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ for $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is $-286 \mathrm{~kJ}, ~ \square \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ for $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is $-242 \mathrm{~kJ}, \square \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ for $\mathrm{HCl}(\mathrm{g})$ is -92 kJ , and $\square \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ for $\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})$ is -1276 kJ , determine $\square \mathrm{H}^{\circ}$ reaction for the following reaction.

$$
\begin{gathered}
\mathrm{AlCl}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{HCl}(\mathrm{~g}) \\
\square \mathrm{H}_{\text {reaction }}=\square \square \mathrm{H}_{\mathrm{f}, \mathrm{products}}^{\circ}-\square \square \mathrm{H}_{\mathrm{f}, \text { reactants }}^{\circ} \\
\square \mathrm{H}_{\text {reaction }}=[(3(-92)+(-1276)]-[3(-286)+(-704)] \\
\square \mathrm{H}_{\text {reaction }}=10 \mathrm{~kJ}
\end{gathered}
$$

9. A sample of metal released 367 J of energy, and all of the energy was transferred to a sample of water
a. (5 pts.) Determine qmetal. -367 J
b. (5 pts.) Determine qwater. 367 J
10. (5 pts.) An exothermic reaction is a reaction that absorbs or releases energy?
releases
(5 pts.) The sign of q for an exothermic reaction is positive or negative?
negative
