1. Most nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$salts are soluble.
2. Most salts containing the alkali metal ions $\left(\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Cs}^{+}, \mathrm{Rb}^{+}\right)$and the ammonium ion $\left(\mathrm{NH}_{4}{ }^{+}\right)$are soluble.
3. Most chloride, bromide and iodide salts are soluble. Notable exceptions are salts containing the ions $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}$, and $\mathrm{Hg}_{2}{ }^{2+}$.
4. Most sulfate salts are soluble. Notable exceptions are $\mathrm{BaSO}_{4}, \mathrm{PbSO}_{4}, \mathrm{HgSO}_{4}$, and CaSO_{4}.
5. Most hydroxide salts are only slightly soluble. The important soluble hydroxides are NaOH and KOH . The compounds $\mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH})_{2}$, and $\mathrm{Ca}(\mathrm{OH})_{2}$ are marginally soluble.
6. Most sulfide $\left(\mathrm{S}^{-2}\right)$, carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$, chromate $\left(\mathrm{CrO}_{4}{ }^{2-}\right)$, and phosphate $\left(\mathrm{PO}_{4}{ }^{-3}\right)$ are only slightly soluble (insoluble).
7. Complete the balanced chemical equations for the reactions that occur when the following materials dissolve in water.
a.

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \quad 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})
$$

b.

$$
\mathrm{HBr}(\mathrm{~g}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}}
$$

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})
$$

c.

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \quad \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{aq})
$$

d.

$$
\mathrm{CaCl}_{2}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \quad \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

2. Identify the following compounds as an acid, a base, a neutral ionic compound, or a neutral molecular compound. If the compound is an acid, identify whether it is a week or strong acid

a. HNO_{3}	strong acid	b. BaCl_{2}	ionic compound
c. $\mathrm{CH}_{3} \mathrm{OH}$	neutral molecular	d. KOH	strong base
e. NH_{3}	weak base	f. KI	neutral ionic
g. HNO_{2}	weak acid	h. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	weak acid

3. HCl is a strong acid, HF is a week acid. Write balanced chemical equations for the ionization of the two acids that account for the fact that one acid is a strong acid and the other is a week acid.

$$
\begin{aligned}
& \mathrm{HF}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \\
& \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
\end{aligned}
$$

4. Determine the mass of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ needed to prepare 300.0 mL of a $0.0100 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ solution.

$$
\mathrm{MM} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}=137.327+2(14.006)+6(15.9994)=261.34 \mathrm{~g}
$$

$0.3000 \mathrm{~L} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ soln $\times 0.0100 \mathrm{~mol} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \times 261.34 \mathrm{~g} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}=0.7840 \mathrm{~g} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ $1 \mathrm{~L} \mathrm{Na}\left(\mathrm{NO}_{3}\right)_{2}$ soln $\quad 1 \mathrm{~mol} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
5. Determine the mass, in grams, of AgNO_{3} required to precipitate the chloride, as AgCl , from a $25.0-\mathrm{mL}$ sample of a $0.100 \mathrm{M} \mathrm{FeCl}_{2}$ solution. (Remember to write balanced chemical equations if necessary.)
$2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{FeCl}_{2}(\mathrm{aq})-->2 \mathrm{AgCl}(\mathrm{s})+\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
MM of $\mathrm{AgNO}_{3}=107.868+14.007+3(15.9994)=169.87 \mathrm{~g}$
$0.0250 \mathrm{~L} \mathrm{FeCl}_{2}$ soln $\times \underline{0} .100 \mathrm{~mol} \mathrm{FeCl}_{2} \times 2 \mathrm{~mol} \mathrm{AgNO}_{3} \times 169.87 \mathrm{~g} \mathrm{AgNO}_{3}=0.84935=>0.849 \mathrm{~g} \mathrm{AgNO}_{3}$
$1 \mathrm{~L} \mathrm{FeCl}_{2}$ soln $1 \mathrm{~mol} \mathrm{FeCl}_{2} \quad 1 \mathrm{~mol} \mathrm{AgNO}_{3}$
6. 0.336 mol of BH_{3} was combined with $1.000 \mathrm{~mol}^{\text {of }} \mathrm{CH}_{2} \mathrm{CH}_{2} .0 .250 \mathrm{~mol}$ of $\mathrm{B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}$ was collected. Using the following chemical equation determine

$$
\mathrm{BH}_{3}+3 \mathrm{CH}_{2} \mathrm{CH}_{2} \longrightarrow \mathrm{~B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}
$$

a. the theoretical yield for the reaction.
$0.336 \mathrm{~mol} \mathrm{BH}_{3} \times 1 \mathrm{~mol} \mathrm{~B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}=0.336 \mathrm{~mol} \mathrm{~B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}$ possible from BH_{3} $1 \mathrm{~mol} \mathrm{BH}_{3}$
$1.000 \mathrm{~mol} \mathrm{CH}_{2} \mathrm{CH}_{2} \times 1 \mathrm{~mol} \mathrm{~B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}=0.333 \mathrm{~mol} \mathrm{~B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}$ possible from $\mathrm{CH}_{2} \mathrm{CH}_{2}$ $3 \mathrm{~mol} \mathrm{CH}_{2} \mathrm{CH}_{2}$
theoretical yield is $0.333 \mathrm{~mol} \mathrm{~B}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}$
b. the percent yield.

```
0.250 mol B(CH2 CH CH3)}\mp@subsup{)}{3}{}\times100=75.8% yiel
0.333 mol B(CH2CH3)
```

7. Write balanced chemical equations for the net reaction that occurs when the following solutions are mixed together. If no reaction occurs, write NR where the products would normally be written.
a. NaI and $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$

$$
2 \mathrm{NaI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})-->2 \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{Pbl}_{2}(\mathrm{~s})
$$

b. HNO_{3} and NaOH
$\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq})-->\mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
c. $\mathrm{K}_{2} \mathrm{SO}_{4}$ and MgCl_{2}

NR
d. LiOH and $\mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{LiOH}(\mathrm{aq})-->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{Li}_{2} \mathrm{SO}_{4}(\mathrm{aq})
$$

8. 33.4 mL of a 0.101 M KOH solution were required to neutralized 0.3827 g of an unknown diprotic acid
a. Determine the number of moles of KOH required to neutralize the acid.
0.0334 L KOH soln $\times 0.101 \mathrm{~mol} \mathrm{KOH}=0.0033734 \Rightarrow 0.00337 \mathrm{~mol} \mathrm{KOH}$

1 LKOH soln
b. Determine the number of moles of acid present.

Diprotic means that there are two protons on each acid molecule (like $\mathrm{H}_{2} \mathrm{SO}_{4}$), so two moles of KOH are required for each mole of acid.
$0.0033734 \mathrm{~mol} \mathrm{KOH} \times 1 \mathrm{~mol}$ acid $=0.0016867 \Rightarrow 0.00169 \mathrm{~mol}$ acid 2 mol KOH
c. Determine the molar mass of the unknown acid.

$$
0.3827 \mathrm{~g} \text { acid }=226.893
$$

0.0016867 mol acid

