Name _____ PHYS 0109

Simple Rules for the Solubility of Salts in Water (From Zumdahl, Chemistry, 3e)

- 1. Most nitrate (NO_3) salts are soluble.
- 2. Most salts containing the alkali metal ions (Li⁺, Na⁺, K⁺, Cs⁺, Rb⁺) and the ammonium ion (NH_4^+) are soluble.
- 3. Most chloride, bromide and iodide salts are soluble. Notable exceptions are salts containing the ions Ag^+ , Pb^{2+} , and Hg_2^{2+} .
- 4. Most sulfate salts are soluble. Notable exceptions are $BaSO_4$, $PbSO_4$, $HgSO_4$, and $CaSO_4$.
- 5. Most hydroxide salts are only slightly soluble. The important soluble hydroxides are NaOH and KOH. The compounds Ba(OH)₂, Sr(OH)₂, and Ca(OH)₂ are marginally soluble.
- 6. Most sulfide (S⁻²), carbonate (CO_3^{2-}), chromate (CrO_4^{2-}), and phosphate (PO_4^{-3}) are only slightly soluble (insoluble).
 - 1. Complete the balanced chemical equations for the reactions that occur when the following materials dissolve in water.
 - a.

Na₂SO₄(s)
$$\xrightarrow{H_2O}$$
 2 Na⁺(aq) + SO₄²⁻(aq)

b.

HBr (g)
$$\xrightarrow{H_2O}$$
 $H^+(aq) + Br^-(aq)$

c.

$$C_{12}H_{22}O_{11}(s) \xrightarrow{H_2O} C_{12}H_{22}O_{11}(aq)$$

d.

$$CaCl_2(s) \xrightarrow{H_2O} Ca^{2+}(aq) + 2 Cl^{-}(aq)$$

2. Identify the following compounds as an acid, a base, a neutral ionic compound, or a neutral molecular compound. If the compound is an acid, identify whether it is a week or strong acid

a.	HNO₃	strong acid	b.	BaCl ₂	ionic compound
c.	CH₃OH	neutral molecular	d.	КОН	strong base
e.	NH_3	weak base	f.	KI	neutral ionic
g.	HNO ₂	weak acid	h.	$HC_2H_3O_2$	weak acid

3. HCl is a strong acid, HF is a week acid. Write balanced chemical equations for the ionization of the two acids that account for the fact that one acid is a strong acid and the other is a week acid.

HF (aq)
$$\longrightarrow$$
 H⁺ (aq) + F⁻ (aq)

HCl (aq) \longrightarrow H⁺ (aq) + Cl⁻ (aq)

4. Determine the mass of $Ba(NO_3)_2$ needed to prepare 300.0 mL of a 0.0100 M $Ba(NO_3)_2$ solution.

MM Ba(NO₃)₂ = 137.327 + 2(14.006) + 6(15.9994) = 261.34 g

 $\begin{array}{l} 0.3000 \text{ L } Ba(NO_3)_2 \text{ soln } x \ \underline{0.0100 \text{ mol } Ba(NO_3)_2} x \ \underline{261.34 \text{ g } Ba(NO_3)_2} = 0.7840 \text{ g } Ba(NO_3)_2 \\ 1 \text{ L } Na(NO_3)_2 \text{ soln } 1 \text{ mol } Ba(NO_3)_2 \end{array}$

5. Determine the mass, in grams, of AgNO₃ required to precipitate the chloride, as AgCl, from a 25.0-mL sample of a 0.100 M FeCl₂ solution. (Remember to write balanced chemical equations if necessary.)

 $2 \text{ AgNO}_3 (aq) + \text{FeCl}_2 (aq) --> 2 \text{ AgCl} (s) + \text{Fe}(\text{NO}_3)_2 (aq)$

MM of $AgNO_3 = 107.868 + 14.007 + 3(15.9994) = 169.87 g$

 $\begin{array}{l} 0.0250 \text{ L FeCl}_2 \text{ soln x } \underline{0.100 \text{ mol FeCl}_2 \text{ x } 2 \text{ mol AgNO}_3 \text{ x } \underline{169.87 \text{ g AgNO}_3} = 0.84935 \Rightarrow 0.849 \text{ g AgNO}_3 \\ 1 \text{ L FeCl}_2 \text{ soln } 1 \text{ mol FeCl}_2 & 1 \text{ mol AgNO}_3 \end{array}$

6. 0.336 mol of BH₃ was combined with 1.000 mol of CH₂CH₂. 0.250 mol of B(CH₂CH₃)₃ was collected. Using the following chemical equation determine

 $BH_3 + 3 CH_2 CH_2 \longrightarrow B(CH_2 CH_3)_3$

a. the theoretical yield for the reaction.

0.336 mol BH₃ x $\frac{1 \text{ mol } B(CH_2CH_3)_3}{1 \text{ mol } BH_3}$ = 0.336 mol B(CH₂CH₃)₃ possible from BH₃

1.000 mol CH₂CH₂ x $\frac{1 \text{ mol } B(CH_2CH_3)_3}{3 \text{ mol } CH_2CH_2}$ = 0.333 mol B(CH₂CH₃)₃ possible from CH₂CH₂ 3 mol CH₂CH₂

theoretical yield is 0.333 mol B(CH₂CH₃)₃

b. the percent yield.

<u>0.250 mol B(CH₂CH₃)₃ x 100 = 75.8 % yield</u> 0.333 mol B(CH₂CH₃)₃

- 7. Write balanced chemical equations for the net reaction that occurs when the following solutions are mixed together. If no reaction occurs, write NR where the products would normally be written.
- a. NaI and Pb(NO₃)₂

2 Nal (aq) + Pb(NO₃)₂ (aq) --> 2 NaNO₃ (aq) + PbI₂ (s)

b. HNO3 and NaOH

 HNO_3 (aq) + NaOH (aq) --> NaNO_3 (aq) + H₂O (I)

c. K₂SO₄ and MgCl₂

NR

d. LiOH and H₂SO₄

 H_2SO_4 (aq) + 2 LiOH (aq) --> 2 H_2O (l) + Li₂SO₄ (aq)

- 8. 33.4 mL of a 0.101 M KOH solution were required to neutralized 0.3827 g of an unknown diprotic acid
- a. Determine the number of moles of KOH required to neutralize the acid.

0.0334 L KOH soln x <u>0.101 mol KOH</u> = 0.0033734 => 0.00337 mol KOH 1 L KOH soln

b. Determine the number of moles of acid present.

Diprotic means that there are two protons on each acid molecule (like H_2SO_4), so two moles of KOH are required for each mole of acid.

0.0033734 mol KOH x <u>1 mol acid</u> = 0.0016867 => 0.00169 mol acid 2 mol KOH

c. Determine the molar mass of the unknown acid.

<u>0.3827 g acid</u> = 226.893 0.0016867 mol acid