Simple Rules for the Solubility of Salts in Water (From Zumdahl, Chemistry, 3e)

- 1. Most nitrate (NO_3) salts are soluble.
- 2. Most salts containing the alkali metal ions (Li⁺, Na⁺, K⁺, Cs⁺, Rb⁺) and the ammonium ion (NH_4^+) are soluble.
- 3. Most chloride, bromide and iodide salts are soluble. Notable exceptions are salts containing the ions Ag^+ , Pb^{2+} , and Hg_2^{2+} .
- 4. Most sulfate salts are soluble. Notable exceptions are BaSO₄, PbSO₄, HgSO₄, and CaSO₄.
- 5. Most hydroxide salts are only slightly soluble. The important soluble hydroxides are NaOH and KOH. The compounds $Ba(OH)_2$, $Sr(OH)_2$, and $Ca(OH)_2$ are marginally soluble.
- 6. Most sulfide (S-2), carbonate (CO_3^{2-}), chromate (CrO_4^{2-}), and phosphate (PO_4^{-3}) are only slightly soluble (insoluble).
 - 1. Complete the balanced chemical equations for the reactions that occur when the following materials dissolve in water.

a.

$$Na_2SO_4(s) \xrightarrow{H_2O}$$

b.

HBr (g)
$$\xrightarrow{\text{H}_2\text{O}}$$

c.

$$C_{12}H_{22}O_{11}(s) \xrightarrow{H_2O}$$

d.

$$CaCl_2(s) \xrightarrow{H_2O}$$

2. Identify the following compounds as an acid, a base, a neutral ionic compound, or a neutral molecular compound. If the compound is an acid, identify whether it is a week or strong acid

a. HNO₃

b. BaCl₂

c. CH₃OH

d. KOH

e. NH₃

f. KI

g. HNO₂

h. HC₂H₃O₂

3.	HCl is a strong acid, HF is a week acid. Write balanced chemical equations for the ionization of the two acids that account for the fact that one acid is a strong acid and the other is a week acid.
	HF(aq)
	HCl(aq)
4.	Determine the mass of $Ba(NO_3)_2$ needed to prepare 300.0 mL of a 0.0100 M $Ba(NO_3)_2$ solution.
5.	Determine the mass, in grams, of $AgNO_3$ required to precipitate the chloride, as $AgCl$, from a 25.0-mL sample of a 0.100 M $FeCl_2$ solution. (Remember to write balanced chemical equations if necessary.)

6.	0.336 mol of BH_3 was combined with 1.000 mol of CH_2CH_2 . 0.250 mol of $B(CH_2CH_3)_3$ was collected. Using the following chemical equation determine
	$BH_3 + 3 CH_2CH_2 \longrightarrow B(CH_2CH_3)_3$
a. t	the theoretical yield for the reaction.
b. t	the percent yield.
7.	Write balanced chemical equations for the net reaction that occurs when the following solutions are mixed together. If no reaction occurs, write NR where the products would normally be written.
a.	NaI and Pb(NO ₃) ₂
b.	HNO3 and NaOH
c.	$ m K_2SO_4$ and $ m MgCl_2$
·.	
d.	${ m LiOH}$ and ${ m H_2SO_4}$
8.	33.4 mL of a 0.101 M KOH solution were required to neutralized 0.3827 g of an unknown

a.	diprotic acid Determine the number of moles of KOH required to neutralize the acid.
b.	Determine the number of moles of acid present.
c.	Determine the molar mass of the unknown acid.